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ABSTRACT 

 The goal of this work was to identify and study various monomers and 

polymerization methods for polybenzimidazole polymers. Beginning with the solution 

polymerization of polybenzimidazole via a bisulfite adduct monomer, Chapter 2 

describes the efforts to optimize and scale up this process. Chapter 3 then covers an 

alternative method to prepare polybenzimidazole in solution by using an orthoester 

monomer. Finally, in Chapter 4, the research to incorporate an adamantane moiety into 

the backbone of polybenzimidazole is described.
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION TO POLYBENZIMIDAZOLE 

 Polybenzimidazole or PBI was first published by Vogel and Marvel in 1961 as a 

new class of thermally stable polymers.1 These polymers derive their name from the 

benzimidazole moiety found in the repeat unit illustrated in Scheme 1.1. The most 

common way of synthesizing PBI is to condense a bis-o-diamine (1) and dicarboxylic 

acid or acid derivative (2) in which the R groups of these compounds can be changed. 

Depending on the specific R groups chosen for the polymer, the physical properties can 

vary; however, the glass transition temperature is usually about 430 °C and the 

decomposition temperature is upwards of 600 °C, making this material extremely 

thermally stable compared to other polymers. This polymer also exhibits excellent 

chemical stability as it is resistant to strong acids and organic solvents.2 The combination 

of these properties allows for PBI to be a good material for numerous applications. The 

applications of PBI, which will be discussed in this paper, are hydrogen fuel cells, gas 

separation, and fibers. 

!

Scheme 1.1: General synthesis of polybenzimidazole. 
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1.2 POLYBENZIMIDAZOLE FIBERS 

 Due to the high thermal stability of PBI, this material is a good choice for use in 

flame resistant textiles. The PBI fiber offers good dimensional and physical stability at 

high temperature. The polymer does not melt or burn and is not a fuel source. It forms a 

tough char, which is important in flame resistant applications. Additionally, the polymer 

is chemically resistant to acids and organic solvents.2 For these reasons, PBI fibers have 

been used in firefighting suits, space suits, and various other products in which high 

temperature stability is needed. 

 The current method of production for these fibers is energy and time intensive, 

however. The polymer is first synthesized in a two-step bulk polymerization. In the first 

step, the monomers are heated to form a low molecular weight polymer. As this polymer 

is formed, water and phenol are produced as byproducts and must not only be removed 

but also cause the polymer to form a hard foam. This foam must then be crushed and 

heated in the second stage of polymerization which requires temperatures upwards of 400 

°C to produce a high molecular weight polymer. Once the polymer is synthesized, it must 

be dissolved in an organic solvent for fiber spinning. Dissolving the polymer requires the 

use of high temperature and pressure. Overall this process is unconventional and 

inefficient. If a way to synthesize the polymer in solution was developed, the high energy 

and time requirements could be relieved and the fibers could be spun directly from the 

polymerization solution. 

 Recently, it has been shown that by using a bisulfite adduct of isophthalaldehyde 

with a bis-o-diamine, m-PBI can be synthesized in DMAc at high concentration and high 

inherent viscosity can be achieved.3 Figure 1.1 shows the resulting inherent viscosity of 
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m-PBI when synthesized at various polymer concentrations. In industry the current 

method of production requires that the PBI have an inherent viscosity of approximately 

0.7 dL/g with solution concentrations of 26 wt.% polymer content. Considering the data 

in Figure 1.1, the possibility of producing a PBI solution with these properties is 

promising. However, additional work is required to scale up this polymerization method 

and perform fiber spinning trials. 

!

Figure 1.1: Inherent viscosity of PBI synthesized at various concentrations in solution. 

1.3 POLYBENZIMIDAZOLE FOR USE AS POLYMER ELECTROLYTE MEMBRANES 

 As global energy demands increase, the need for alternative energy sources 

becomes more important. Hydrogen fuel cells have become an emerging technology, 

which can provide a clean source of energy. Polymer electrolyte membrane (PEM) fuel 
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cells are electrochemical devices, which convert chemical energy directly into electrical 

energy so long as fuel and an oxidant are supplied. Figure 1.2 illustrates the basic 

components of the PEM fuel cell. The fuel, typically hydrogen, is supplied to the anode 

side where the hydrogen can associate with a platinum catalyst and be split into its 

constituent protons and electrons. The electrons are supplied to the external circuit while 

the protons are conducted through the PEM. On the cathode side of the fuel cell oxygen 

or air is supplied and protons from the PEM are able to combine on another platinum 

catalyst with oxygen to create water and heat. Since the only byproducts of this process 

are water and heat, the hydrogen fuel cell is a good source of clean energy. 

!

Figure 1.2: Schematic of PEM fuel cell taken from Fuel Cell Handbook.4 

 At the heart of the fuel cell is the PEM which is a polymer membrane doped with 

an electrolyte. Historically water has been used as the electrolyte in the membrane, which 

limits the operating temperature of the fuel cell. Operating above 100 °C will vaporize 

the electrolyte and cause the fuel cell to fail. Polybenzimidazole has become an attractive 
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polymer for use in the PEM due to its high thermal stability and chemical resistance. PBI 

has the added benefit that it can be doped with electrolytes such as phosphoric or sulfuric 

acid. The combination of these properties allow for increased operating temperatures 

above 120 °C as water is not required for proton conductivity. The higher operating 

temperature in turn allows for better electrode kinetics, higher impurity tolerance, and 

eliminates the need to humidify the fuel. Proton conductivity of the PBI membrane is 

dependent on polymer architecture and is one of the motivations for this research.5 

1.4 POLYBENZIMIDAZOLE FOR USE IN GAS SEPARATION DEVICES 

 Another application in which PBI is used is gas separation for the capture or 

purification of hydrogen gas. In these devices, a polymer membrane is used to perform 

the separation but the major consideration in selecting a polymer membrane is the trade-

off between selectivity and permeability of the membrane. For a particular polymer 

membrane, the selectivity for hydrogen over other gases may be high but the permeability 

will be low and the opposite can be true as well. The performance of the membrane is 

dependent primarily on free volume of the polymer, polymer chain packing in the 

membrane, and polymer chain mobility.6 Investigation into new PBI chemistries for use 

in gas separation devices is important in understanding the relationship between polymer 

architecture and membrane performance. 

1.5 THESIS OUTLINE 

 In this thesis, Chapter 2 describes the efforts to prepare the bisulfite adduct 

polymerization method for scale up and fiber spinning trials. First, optimizations were 

studied to ensure that time and temperature profiles were understood and the results of 

these findings are presented. Also, the addition of sodium bisulfite to the reaction prior to 
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polymerization was studied to ensure that any remaining aldehyde functionalities were 

converted to the bisulfite adduct in situ and that high molecular weight polymer was 

synthesized. Then, as a way to modify polymer solution viscosity, an important 

parameter for fiber spinning, lithium chloride and sodium bisulfite were added to 

polymer solutions to determine the effect these salts had on the solution viscosity. 

 Once these optimizations were completed, the monomer synthesis was scaled 

from ~12 g batches to >500 g batches and the solvent use in the monomer synthesis was 

reduced. Next, the polymer synthesis was scaled from ~20 g scale to multi-kilogram 

scales in several steps. Starting with larger laboratory scale reactions, the polymerization 

was studied to ensure high inherent viscosity polymer could be synthesized at high 

concentration. Once these laboratory scale-up polymerizations had proved successful, an 

industrial pilot reactor was then used to do the polymerization on a multi-kilogram scale. 

This scale polymerization presented challenges and resulted in more laboratory 

experiments being conducted to determine the cause. 

 In Chapter 3, the efforts to produce meta-PBI in DMAc are described utilizing a 

different chemistry, a bisorthoester. This chapter begins by describing the monomer 

synthesis, which when compared to the bisulfite adduct synthesis has many more steps 

and is not as efficient. However, the polymerization is very similar to the bisulfite adduct 

synthesis and meta-PBI was synthesized at several concentrations, all of which were 

much higher than previously reported. The polymer inherent viscosity was then measured 

and plotted as a function of concentration. The initial findings from this set of studies 

proved to be promising for this chemistry to produce meta-PBI in DMAc. 
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 Chapter 4 then describes the synthesis of an adamantane-PBI. This work was 

done to study the gas separation properties of this polymer as well as for use as a proton 

exchange membrane. In this chapter, it was found that the adamantanedicarboxylic acid 

monomer was sensitive to the polymerization solvent and another solvent was identified. 

The adamantane-PBI also presented solubility issues, and modifications to the 

adamantane monomer were performed in an effort to increase the solubility of the 

polymer in organic solvents as well as stabilize the monomer in polymerization solvents. 
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CHAPTER 2: OPTIMIZATION AND SCALE-UP OF SOLUTION 

POLYMERIZATION OF POLYBENZIMIDAZOLE 

2.1 INTRODUCTION 

 After the conclusion of the initial studies to demonstrate that a bisulfite adduct 

monomer could be used to produce meta-PBI in solution at high polymer concentration, 

additional work was required to optimize and scale up the process for fiber spinning 

trials.1 First, to optimize the process, time and temperature studies were performed to 

determine the optimal conditions for this polymerization. Additionally, to be able to spin 

fibers, the polymer solution should have a viscosity of approximately 2100 Poise and thus 

solution viscosity modifiers were investigated. Additional measures were also studied to 

ensure target inherent viscosity was achieved in the polymerization. 

 Once these parameters were determined, both the monomer and polymer 

synthesis was scaled up to determine if this method of polymerization could be used to 

create a polymer solution which could be spun into fibers. Monomer scale-up involved 

optimization of solvent use and monomer slurry processing. The polymer scale-up was 

performed in steps going from the 20 g scale up to a 6 Kg in an industrial pilot reactor. 

2.2 MATERIALS 

 3,3’,4,4’-Tetraaminobiphenyl (TAB) was donated by BASF. Isophthalaldehyde 

was purchased from TCI America and Combi-Blocks. Sodium Bisulfite was purchased 
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from VWR. Dimethylacetamide was purchased from Acros Organics and Oakwood 

Chemicals. Methanol was purchased from MACRON Fine Chemicals. 

2.3 CHARACTERIZATION 

2.3.1 INHERENT VISCOSITY 

Approximately 0.050 g of recently dried polymer was added to a 25 mL 

volumetric flask. The flask was partially filled with concentrated sulfuric acid and shaken 

on a mechanical wrist-action shaker overnight to dissolve the polymer. Once all polymer 

was dissolved, the flask was completely filled with concentrated sulfuric acid to achieve a 

final polymer concentration of 0.2 g/dL. The polymer solution was filtered through a 0.4 

µm filter to remove any undissolved particles and the filtered solution was added to a 200 

µm Ubbelohde viscometer. The viscometer was placed into a 30 °C water bath for 30 

minutes. Three flow times between the calibrated marks on the viscometer were 

measured. The average of these times was used in Equation 3.1 as the solution time t. 

Equation 2.1 

!!"# =
!" ! !!

! !

ηinh (dL/g): inherent viscosity 

t (sec): solution flow time 

t0 (sec): solvent flow time 

C (g/dL): solution concentration 



www.manaraa.com

!

 11 

2.3.2 THERMOGRAVIMETRIC ANALYSIS (TGA) 

 TGA was performed using a TA Instruments Q-5000 with heating rate of 10 

°C/min under nitrogen. Weight loss of polymer as a function of temperature was 

compared to commercial samples of m-PBI to confirm presence of desired product. 

2.3.3 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

 FTIR spectra were recorded on a Perkin Elmer Spectrum 100 using an attenuated 

total reflection (ATR) diamond cell attachment. Monomer spectra were used to detect 

impurities and polymer spectra were compared to commercial polymer spectra. 

2.3.4 NUCLEAR MAGNETIC RESONANCE (NMR) 

 NMR spectra were recorded using a 300 MHz Varian Mercury 300 Spectrometer 

using dimethyl sulfoxide-d6. 1H-NMR spectra of monomer samples were used to confirm 

the presence of the desired product and detect impurities. 

2.3.5 SOLUTION VISCOSITY 

 Samples of polymer solution were sent to an industrial lab for viscosity 

measurements. The industrial lab used a Brookfield Rheometer, Model R/S-CPS with a 

25 mm diameter cone spindle with 2° angle. Viscosity measurements were made at the 

end of 60 seconds in a constant sheer stress mode set to 1000 Pa. 

2.4 TIME AND TEMPERATURE POLYMERIZATION STUDIES 

 The initial studies using the bisulfite adduct monomer to make meta-PBI were all 

performed in DMAc at reflux conditions for 24 hours.1 These trials showed that under 

these conditions, meta-PBI could be synthesized at high polymer concentration and give 

a high inherent viscosity. Further studies were conducted to determine whether the 
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polymer could be synthesized under milder conditions and if 24 hours of reaction time 

was needed. To answer these questions, polymerizations were conducted at various 

temperatures (140, 150, 160 °C) and reaction times (6, 12, 18, 24 hours). 

2.4.1 EXPERIMENTAL 

2.4.1.1 SYNTHESIS OF ISOPHTHALALDEHYDE BISULFITE ADDUCT (IBA) 

 Isophthalaldehyde (5.00 g, 0.0372 moles) and sodium bisulfite (7.76 g, 0.0745 

moles) were added to a 1 L round bottom flask. Methanol (500 mL) and water (75 mL) 

were poured over the starting materials. The solution was slurried for 24 hours before 

filtering the IBA and washing with methanol. IBA was dried under vacuum at 60 °C 

overnight before use. Collected 12.47 g of IBA (98 % yield). 1H-NMR (DMSO-d6), ppm: 

4.95 (2H, s, OH); 5.85 (2H, s, CH), 7.09-7.51 (3, m, Ar-H). 

2.4.1.2 SYNTHESIS OF M-PBI 

 Isophthalaldehyde bisulfite adduct (4.00 g, 0.01168 moles), 3,3’,4,4’-

tetraaminobiphenyl (2.504 g, 0.01168 moles), and dimethylacetamide (17.5 mL) were 

added to a 100 mL round bottom flask fitted with nitrogen flow, mechanical stirrer, and 

reflux condenser. The flask was placed in a preheated oil bath and stirred at 30 RPM. 

Polymerization time and temperature was varied between 6, 12, 18, and 24 hours and 

temperatures of 140, 150, and 160 °C. 

2.4.2 RESULTS 

 Three polymerizations for each of the times (6, 12, 18, and 24 hours) at each of 

the temperatures (140, 150, and 160 °C) were conducted. After each polymerization, the 

inherent viscosity of the polymer was measured. The results for all polymer samples are 
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plotted in Figure 2.1. In general, there was no trend for any of the times or temperatures 

except that all but two of the polymer samples were under the required 0.7 dL/g inherent 

viscosity. This indicates that the polymerization does require reflux conditions and 24 

hours of reaction time to achieve high inherent viscosity. The two outlying data points, 

which did achieve the target inherent viscosity, are likely the result of experimental error 

but could be an indication that the polymerization can be performed at these lower 

temperatures and shorter times. As with all new reactions, unknown variables could have 

sizeable affects on the polymerization (e.g., variations in monomer purity with different 

lots of monomer). 

!

Figure 2.1: Inherent viscosity of polymer samples plotted with respect to reaction time. 
Polymerizations are color coded 140 °C (blue diamonds), 150 °C (red squares), and 160 
°C (green triangles). 

Thermogravimetric analysis of some of the polymers produced under these 

conditions was performed. Results from this analysis are shown in Figure 2.2. Plotted in 

this figure are a commercial m-PBI sample and three polymer samples polymerized at 

140, 150, and 160 °C for 24 hours. Although there are differences in moisture content 
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between the commercial sample and the solution polymerized samples, all of the 

polymers are thermally stable up to 600 °C at which point they begin to degrade. The 

major differences among the samples are the char yield. For the commercial m-PBI and 

160 °C sample, approximately 70 % of the initial weight remains at 1000 °C. In the case 

of the 150 °C and 140 °C samples, however, significantly less material is present at the 

end of the experiment. The 140 °C sample is almost completely degraded at 1000 °C. 

These results are indicative of incomplete ring closure to form the benzimidazole in the 

backbone of the polymer due to the lower reaction temperatures. 

!

Figure 2.2: TGA of commercial m-PBI (solid black) and polymer samples synthesized at 
140 °C (red dashes), 150 °C (green dots), and 160 °C (blue dash-dots). 
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2.4.3 CONCLUSIONS 

 By utilizing the bisulfite adduct of isophthalaldehyde, m-PBI was synthesized in 

solution below reflux temperature and over shorter reaction times. The inherent 

viscosities for the resulting polymers synthesized under these conditions were generally 

much lower than the targeted 0.7 dL/g necessary to produce m-PBI fibers. Also, the 

thermal stability of the polymer synthesized at these lower temperatures is severely 

reduced. These results suggest that reaction time must be at least 24 hours or more at 

reflux temperature of DMAc to achieve high molecular weight m-PBI. Lower 

polymerization temperatures are likely to result in incomplete ring closure of the 

benzimidazole ring system. 

2.5 ADDITIONAL SODIUM BISULFITE POLYMERIZATIONS 

 Although the synthesis to make the bisulfite adduct monomer is an efficient 

reaction which gives high yield and purity, there is still a small amount of the aldehyde 

present as seen by NMR.1 To ensure that all aldehyde functionalities were converted to 

the bisulfite adduct, it was proposed to add additional sodium bisulfite to the 

polymerization solution to form the bisulfite adduct in situ. In practice, three different 

amounts of additional sodium bisulfite were used; 4 % by weight of the bisulfite adduct 

monomer, and 2 and 4 mole percent additional sodium bisulfite. The inherent viscosity of 

the polymer was then measured to determine the effect of the additional salt. 
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2.5.1 EXPERIMENTAL 

2.5.1.1 POLYMERIZATION OF M-PBI IN DMAC WITH 2 WEIGHT PERCENT ADDITIONAL 

SODIUM BISULFITE 

 Isophthalaldehyde bisulfite adduct (4.00 g, 0.01168 moles), 3,3’,4,4’-

tetraaminobiphenyl (2.504 g, 0.01168 moles), sodium bisulfite (0.080 g, 0.00076 moles) 

and dimethylacetamide (17.5 mL) were added to a 100 mL round bottom flask fitted with 

nitrogen flow, mechanical stirrer, and reflux condenser. The solution was stirred and 

heated to reflux for 24 hours. After allowing the solution to cool, a portion of the polymer 

solution was poured into 500 mL water and the precipitated polymer was washed in a 

blender twice with water and twice with methanol. The polymer was then dried overnight 

under vacuum at 200 °C. 

2.5.1.2 POLYMERIZATION OF M-PBI IN DMAC WITH 2 OR 4 MOLAR PERCENT 

ADDITIONAL SODIUM BISULFITE 

 Isophthalaldehyde bisulfite adduct (4.00 g, 0.01168 moles), 3,3’,4,4’-

tetraaminobiphenyl (2.504 g, 0.01168 moles), sodium bisulfite (0.024 g, 0.00023 moles, 

2% or 0.048 g, 0.00046 moles, 4%), and dimethylacetamide (17.5 mL) were added to a 

100 mL round bottom flask fitted with nitrogen flow, mechanical stirrer, and reflux 

condenser. The solution was stirred and heated to reflux for 24 hours. After allowing the 

solution to cool, a portion of the polymer solution was poured into 500 mL water and the 

precipitated polymer was washed in a blender twice with water and twice with methanol. 

The polymer was then dried overnight under vacuum at 200 °C. 
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2.5.2 RESULTS 

 Beginning with the large excess of sodium bisulfite polymerization, which was 

the 2 weight percent additional salt, the solution initially behaved normally. Once the 

solution reached a temperature of 120 °C, however, there was a gas produced and the 

solution began foaming. This off gassing subsided fairly quickly but did cause some of 

the undissolved monomer to be pushed onto the side of the reaction vessel. Once the 

solution reached the final reflux temperature of 168 °C, the all of the monomer dissolved 

and the polymerization behaved as expected resulting in a viscous polymer solution. The 

inherent viscosity of the polymer was 0.72 dL/g. 

 In the case of the 2 and 4 molar percent additional sodium bisulfite, a similar off 

gassing was observed when the solution reached a temperature of 120 °C but these 

episodes were much more brief. Again, once the solution reached reflux temperature, the 

polymerization behaved normally and produced a viscous polymer solution at the end of 

the reaction time. Inherent viscosity measurements of the polymers with the 2 and 4 

molar percent additional sodium bisulfite were 0.64 dL/g and 0.75 dL/g respectively. 

Given these data, it was evident that the 4 molar percent additional salt would ensure that 

any unreacted aldehyde would be converted to the bisulfite adduct in situ but also 

minimize the amount of foaming in the solution.  

2.5.3 CONCLUSIONS 

 Polymerizations using the bisulfite adduct monomer were conducted with 2 

weight percent, 2 molar percent, and 4 molar percent additional sodium bisulfite. In all 

cases, some off gassing was observed but once the solution reached the final 

polymerization temperature the off gassing had subsided. The polymerization with 4 
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molar percent additional salts achieved the highest inherent viscosity of all the 

polymerizations and minimized the amount of foaming in the solution. 

2.6 VISCOSITY MODIFIERS 

 Currently, the method of spinning PBI fibers requires that PBI of  ~0.7 dL/g 

inherent viscosity be dissolved in DMAc with 2 wt.% lithium Chloride at 26 wt.% 

polymer content. This makes a PBI solution with a viscosity of 2100 Poise, ideal for the 

current equipment to spin fibers. In order to match these solution specifications, a method 

for adjusting the solution viscosity would need to be identified. Lithium chloride is 

known in industry to not only be a solution stabilizer but also increases the polymer 

solution viscosity. Lithium chloride is corrosive and is therefore less desirable from an 

industrial viewpoint so alternatives to this salt would be preferred. Adjusting the viscosity 

with other salts such as sodium bisulfite would therefore be studied in this work. 

2.6.1 EXPERIMENTAL 

 PBI/DMAc solution (25.0 g) with known inherent viscosity and polymer content 

was measured into a 100 mL resin kettle. Lithium chloride (0.5 g, 0.0118 moles) or 

sodium bisulfite (0.5 g, 0.0048 moles) was added to the polymer solution and stirred 

overnight at 80 °C. The solution is then cooled and collected for viscosity measurements. 

2.6.2 RESULTS 

 After tabulating the viscosity results from samples with a variety of inherent 

viscosities and polymer content (Table 2.1), it was apparent that the solution viscosity is 

very sensitive to these factors. Sample AG2-201 was the only sample to exceed the 

desired viscosity of 2100 poise; however, according to industry sources, this solution 



www.manaraa.com

!

 19 

viscosity would be too high to spin fibers from using the current equipment. The majority 

of the polymer solutions were far too low viscosity for fiber spinning and those marked 

with asterisk had viscosities too low to measure on the instrument. One interesting result 

is the effect polymer content had on the solution viscosity with additional salts added. 

Most of the lower solids content solutions did not increase in viscosity or increased 

marginally with the addition of lithium chloride or sodium bisulfite. The higher solids 

content solutions had a much more pronounced response to the additional salts as seen in 

sample AG2-201. 

Table 2.1: Viscosity of polymer solutions before and after adding viscosity modifiers. 

!

! Another area of interest from these data is the relationship between inherent 

viscosity and solution viscosity. In the case of AG2-201, the I.V. is only 0.32 dL/g but 

the solution viscosity can be adjusted to well over the target 2100 poise. By contrast, the 

solutions that had higher I.V. but lower solids content did not increase in viscosity at all 

or very little with additional salts. These data suggest the solution viscosity has a 

Sample I.V.  
(dL/g) % Solids 

Viscosity (poise) 

No Salt + 2% LiCl +2% NaHSO3 

§ AG2-201 0.32 23 450 3004 3101 

Standard 
Formulation 

AG2-209 0.36 17.8 * * * 

JH1-96 0.33 17.8 * 87 * 

WPS1-142 0.42 17.8 * * * 

2 wt.% Excess 
NaHSO3 

AG2-210 0.62 17.8 * 27 6 

JH1-97 0.62 17.8 * * 191 

WPS1-143 0.77 17.8 693 253 29 

8 L Run 0.39 22 3.4 * * 

2% Molar XS JH1-116 0.64 22 * * 6.5 

4% Molar XS JH1-117 0.75 22 370 274 1233 
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complex relationship with inherent viscosity and polymer content and more data would 

be needed to fully understand the relationships between the key variables of I.V., polymer 

concentration, and added salts. 

2.6.3 CONCLUSIONS 

 Based on the results from the viscosity measurements, it was apparent that the 

polymer solution viscosity is sensitive to a number of factors. The polymer content of the 

solution plays a significant role as all of the 17 % polymer solutions were very low 

viscosity. Some of the higher polymer content solutions were able to come close to the 

target 2100 poise but there was not enough data to draw a trend for the amount of 

viscosity modifier would be needed for a particular polymer solution. In the production 

runs, the viscosity will need to be adjusted by trying several amounts of viscosity 

modifier. Additionally, both salts (lithium chloride and sodium bisulfite) were able to 

modify the viscosity so there is still the possibility to eliminate the corrosive lithium 

chloride from the fiber spinning process.!

2.7 MONOMER SCALE-UP AND OPTIMIZATION 

 Monomer production is an important aspect to this process since the 

isophthalaldehyde bisulfite adduct monomer is not commercially available. The 

published synthesis,2 requires 500 mL of methanol to produce 12.7 g of 

isophthalaldehyde bisulfite adduct. This means for every kilogram of the bisulfite adduct, 

nearly 40 L of methanol would be required and multiple kilograms of monomer are 

needed to make enough of the polymer solution to attempt a fiber spinning trial. While 

the methanol could be recycled this would be tedious and so a more solvent efficient 

synthesis was studied.!
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2.7.1 EXPERIMENTAL 

2.7.1.1 SYNTHESIS OF ISOPHTHALALDEHYDE BISULFITE ADDUCT AT 6X CONCENTRATION 

OF PREVIOUSLY PUBLISHED WORK 

 Isophthalaldehyde (29.937 g, 0.2232 moles) was dissolved in methanol (500 mL) 

and sodium bisulfite (46.514 g, 0.447 moles) was dissolved in water (75 mL). Once 

dissolved the aqueous sodium bisulfite solution was added dropwise to the methanol 

solution and stirred overnight. A white precipitate formed which was then filtered off, 

washed with methanol, and the product was dried overnight under vacuum at 60 °C. 

Collected 74.08 g of IBA (97 % yield). 1H-NMR (DMSO-d6), ppm: 4.95 (2H, s, OH); 

5.85 (2H, s, CH), 7.09-7.51 (3, m, Ar-H). 

2.7.1.2 SYNTHESIS OF ISOPHTHALALDEHYDE BISULFITE ADDUCT ON MULTI-KILOGRAM 

SCALE 

 Isophthalaldehyde (208.57 g, 1.555 moles) was dissolved in methanol (3478 mL) 

and sodium bisulfite (332.26 g, 3.193 moles) was dissolved in water (521 mL). The 

aqueous sodium bisulfite solution was added to the methanol solution dropwise while 

being stirred. The solution was stirred overnight and a white precipitate formed. The 

product was filtered off, washed with methanol, and dried under vacuum at 60 °C. 

Collected 521.5 g of IBA (98 % yield). 1H-NMR (DMSO-d6), ppm: 4.94 (2H, s, OH); 

5.86 (2H, s, CH), 7.10-7.51 (3, m, Ar-H).!

2.7.2 RESULTS 

 After attempting several increased concentrations, it was found that the 6 times 

concentration over the original formulation was ideal from a processing perspective. At 7 
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times the original concentration, as the bisulfite adduct began to precipitate, the slurry 

became too thick and adequate stirring was not achieved. This sub-optimal stirring led to 

a slight increase in mono-adduct formation and the work-up of the material became more 

difficult because the monomer could no longer be poured out of the flask. At the 6 times 

concentration, the solution could be slurried effectively and the product was easily 

poured for filtration and washing. Additionally, when this synthesis was scaled to a 

multi-kilogram level, the monomer slurry could still be stirred effectively and there was 

not an increase in mono-adduct formation. The NMR of the product (Figure 2.3) 

synthesized on the multi-kilogram scale had a very small peak at 10 ppm from the 

aldehyde proton but integration calculated that the product was >98% pure. 

!

Figure 2.3: 1H-NMR of isophthalaldehyde bisulfite adduct made at 6 times original 
concentration on multi-kilogram scale. 
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2.7.3 CONCLUSIONS 

 In this work, several batches of isophthalaldehyde bisulfite adduct were 

synthesized at higher concentrations than originally reported and on multi-kilogram 

scales. These monomer preparations at higher concentrations showed that this synthesis 

could be more solvent efficient than before without sacrificing monomer quality. Also, 

this process proved to be easily scaled which is important to make this a viable industrial 

process.!

2.8 LAB SCALE-UP POLYMERIZATIONS 

 Before attempting a polymerization in the industrial pilot reactor, several 

polymerizations were performed at intermediate scales to identify potential challenges. 

Based on the viscosity data, these polymerizations would first be attempted at 26 % 

polymer content which is the same concentration as the polymer solution used currently 

to spin fibers.!

2.8.1 EXPERIMENTAL 

2.8.1.1 26 % POLYMER SOLUTION POLYMERIZATION ON 600 GRAM SCALE 

 Isophthalaldehyde bisulfite adduct (172.04 g, 0.5026 moles), 3,3’,4,4’-

tetraaminobiphenyl (107.71 g, 0.5026 moles), sodium bisulfite (2.092 g, 0.0201 moles) 

and dimethylacetamide (475 mL) were added to a 2 L resin kettle. The kettle was 

equipped with an overhead mechanical stirrer, nitrogen flow and reflux condenser. The 

kettle was placed in an oil bath and the solution was heated to reflux over 1 hour. The 

solution was stirred and refluxed for 24 hours at which point the solution was allowed to 

cool and was collected. A portion of the polymer solution was poured into excess water, 



www.manaraa.com

!

 24 

powdered in a laboratory blender, and washed with water and methanol twice. The 

polymer powder was then dried at 200 °C under vacuum overnight for inherent viscosity 

measurements. 

2.8.1.2 17.8 % POLYMER SOLUTION POLYMERIZATION ON 200 GRAM SCALE 

 Isophthalaldehyde bisulfite adduct (24.58 g, 0.1147 moles), 3,3’,4,4’-

tetraaminobiphenyl (39.26 g, 0.1147 moles), sodium bisulfite (0.477 g, 0.0045 moles) 

and dimethylacetamide (175 mL) were added to a 500 mL three-neck round-bottom flask. 

The flask was equipped with an overhead mechanical stirrer, nitrogen flow and reflux 

condenser. The flask was placed in an oil bath and the solution was heated to reflux over 

1 hour. The solution was stirred and refluxed for 24 hours at which point the solution was 

allowed to cool and was collected. A portion of the polymer solution was poured into 

excess water, powdered in a laboratory blender, and washed with water and methanol 

twice. The polymer powder was then dried at 200 °C under vacuum overnight for 

inherent viscosity measurements.!

2.8.2 RESULTS 

 The 600 g scale polymerization started off with similar observations to those seen 

in the additional sodium bisulfite polymerizations. As the solution reached a temperature 

of 120 °C, the solution began to foam but due to the differences in scale and reactor 

design the foaming did not subside as quickly. To control the foaming, the kettle was 

lifted out of the oil bath and allowed to cool down which stopped the foaming. Once the 

foaming subsided the kettle was lowered back into the oil bath and resumed heating. 

Again, as the solution heated foaming started again and the kettle had to be removed from 

the oil bath. This process was repeated several times until all foaming subsided and the 
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solution was heated to reflux. Once reflux was achieved the reaction was stable and after 

24 hours the solution was dark brown and viscous.  

The inherent viscosity of the polymer from this reaction was only 0.32 dL/g. 

Since the polymerization was conducted at a high polymer concentration, it was thought 

that this polymerization was at the upper limit of polymer concentrations that would 

produce high I.V. PBI by this process. Thus, the next set of polymerizations was 

conducted at the 17.8% concentration, which had shown to produce the highest inherent 

viscosities on small-scale tests. 

 Because the 600 gram polymerizations used a large amount of monomer for each 

run, the next set of polymerizations was done on 200 gram scales at 17.8 % polymer 

content; 10 times the original scale. During these polymerizations, the solution foamed in 

same way as the previous polymerizations and the solution had to be cooled and heated 

slowly to control the foaming. After the foaming stopped, the polymerization was stable 

at reflux conditions and after 24 hours of reaction time the solution was dark brown and 

viscous. The resulting inherent viscosity of the polymer from this solution was 0.62 dL/g.!

2.8.3 CONCLUSIONS 

 Two sets of scaled-up polymerizations were conducted at 26 % and 17.8 % 

polymer content. The higher polymer concentration polymerization produced low I.V. 

polymer and it was concluded that the concentration would need to be decreased. At 17.8 

% polymer content, the polymerization was able to produce polymer with a 0.62 dL/g 

inherent viscosity. This result was much closer to the target 0.7 dL/g inherent viscosity 

necessary for fiber spinning and would therefore be the starting point for the 

polymerization in the pilot reactor at the industrial site.!
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2.9 INDUSTRIAL SITE SCALE-UP POLYMERIZATIONS 

 After several intermediate scale polymerizations had been conducted and inherent 

viscosities of the resulting polymer were close to the target 0.7 dL/g, the next step of the 

project was to attempt a polymerization in the pilot reactor at an industrial site. The pilot 

reactor is an 8 L steel reactor with a band heater, condenser attachment, nitrogen purge, 

and thermocouples inside the reactor and on the outside wall between the band heater. 

The reactor is controlled by a PID controller able to control the temperature set point and 

stir rate. The controller also displays solution temperature, heater temperature, heater 

output, and amperes to maintain stir speed. The nitrogen out line would also be bubbled 

through a water scrubber to remove any sulfur dioxide gas produced during the 

polymerization and catch any condensate not returned by the condenser.!

2.9.1 EXPERIMENTAL 

2.9.1.1 PILOT REACTOR POLYMERIZATION 1 

 3,3’4,4’-Tetraaminobiphenyl (607.56 g, 2.835 moles, TAB) was dissolved in 

dimethylacetamide (3330 mL) the day prior to the polymerization and stored in glass 

bottles. Isophthalaldehyde bisulfite adduct (970.45 g, 2.835 moles) and sodium bisulfite 

(11.8 g, 0.1134 moles) were added to the pilot reactor and then TAB/DMAc solution was 

poured in the reactor. The reactor was set to heat to 162 °C and stir at 60 RPM for 24 

hours. After this time, the polymer solution was cooled and discharged into 1 L 

containers for analysis. 
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2.9.1.2 PILOT REACTOR POLYMERIZATION 2 

 3,3,4,4’-Tetraaminobiphenyl (897.54 g, 4.189 moles, TAB) was dissolved in 

dimethylacetamide (3948 mL) the day prior to the polymerization and stored in glass 

bottles. Isophthalaldehyde bisulfite adduct (1433.62 g, 4.189 moles) and sodium bisulfite 

(17.44 g, 0.1675 moles) was added to the pilot reactor and the TAB/DMAc solution was 

poured in the reactor. The reactor was set to heat to 162 °C and stir at 90 RPM for 24 

hours. After this time, the polymer solution was cooled and discharged into 1 L 

containers for analysis. 

2.9.1.3 PILOT REACTOR POLYMERIZATION 3 

 3,3,4,4’-Tetraaminobiphenyl (718.03 g, 3.352 moles, TAB) was dissolved in 

dimethylacetamide (3159 mL) the day prior to the polymerization and stored in glass 

bottles. Isophthalaldehyde bisulfite adduct (1146.90 g, 3.352 moles) and sodium bisulfite 

(13.95 g, 0.1340 moles) was added to the pilot reactor and the TAB/DMAc solution was 

poured in the reactor. The reactor was set to heat to 162 °C and stir at 90 RPM for 24 

hours. After this time, the polymer solution was cooled and discharged into 1 L 

containers for analysis. 

2.9.2 RESULTS 

 For the first polymerization in the pilot reactor, it was decided to use a 22 % 

polymer content solution to compromise for final solution viscosity and inherent 

viscosity of the polymer. In this polymerization, the solution of monomers was heated 

from ambient to 170 °C in about 1 hour. During this time, it was noticed that once the 

solution reached a temperature of 130 °C, the nitrogen bubble rate through the water 

scrubber became irregular and turned the water cloudy. As the solution continued to 
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increase in temperature, what appeared to be DMAc began coming out through the 

nitrogen out line into the water scrubber so the nitrogen flow rate was reduced. Once the 

solution reached a temperature of 175 °C, the fluid level in the water scrubber had 

increased from 1 L at the start of the reaction to 2 L. This would mean that if all of the 

liquid that came off the reaction was DMAc, then the polymer concentration would be in 

the region of 28 % polymer content, which is sub-optimal for achieving high I.V. 

polymer. To correct this, the solution was cooled back down to below 100 °C so that 

additional DMAc could be added to the reactor and a larger condenser could be installed. 

 Once 1 L of DMAc had been added back into the reactor, the solution was again 

heated but instead of heating directly to the final temperature the set point was increased 

in steps. Figure 2.4 illustrates the temperature profile used for the entire reaction. In this 

figure, an overshoot was apparent when from when the temperature set point was 

changed. The cause for this overshoot can be seen in Figure 2.4. When the solution 

temperature is lower than the set point, the PID controller sets the heaters to 100 % 

output to quickly increase the temperature. The overshoot then occurs when the PID 

controller does not decrease the power output of the heater until the set point was reached 

and even continues to supply power once the set point is exceeded. Due to this overshoot, 

an oscillation in solution temperature occurred and to prevent DMAc from escaping the 

condenser the set point was set to 162 °C. This oscillation had a peak temperature of 165 

°C and trough of 158 °C for the durations of the polymerization. 



www.manaraa.com

!

 

29 

!
Figure 2.4: Plot of solution temperature, temperature set point, and heater output for pilot reactor polymerization 1.
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 After the solution temperature stabilized and the oscillation was minimized, the 

polymerization continued for another 24 hours. Once the solution cooled, the reactor was 

discharged and a dark brown liquid was collected.  The final solution viscosity was only 

3.4 poise and the inherent viscosity was 0.39 dL/g. FTIR characterization was performed 

and confirmed that the reaction did produce meta-PBI (Figure 2.5). Compared to the 

commercially produced PBI, the first pilot reactor polymer appears to be the same 

material. 

!

Figure 2.5: FTIR spectrum of commercial PBI (bottom curve) and PBI from first pilot 
reactor polymerization (top curve). 

 In the second pilot reactor polymerization, some conditions and reaction methods 

were altered. The first condition to be altered was the temperature profile which was 

initially be set to 140 °C then gradually increased to the final polymerization temperature 

to minimize temperature overshoot and DMAc loss. Also, the polymer content was 
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increased to 26 % because several small scale trials had shown the ability to achieve high 

I.V. at this concentration. Finally, the total reaction volume was increased because the 

stirrer in the pilot reactor did not fully submerge in the first reaction and optimal stirring 

did not occur. 

 The second pilot reactor polymerization initially showed promising improvement 

over the previous. As the solution heater reached 130 °C, the gas flow out increased 

rapidly but subsided almost immediately. Again, the water scrubber became cloudy at 

this point. When the solution temperature reached 150 °C, the volume of liquid in the 

water scrubber began to increase again. To avoid opening the reactor and exposing the 

reaction to air, the reaction was allowed to continue without replacing lost DMAc. The 

temperature continued to increase to the final set point temperature of 162 °C. A plot of 

the temperature profile is shown in Figure 2.6. As in the first polymerization, an 

oscillation around the set point lasted for the duration of the reaction.
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Figure 2.6: Plot of solution temperature, temperature set point, and heater output for pilot reactor polymerization 2.
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 Once the polymerization was completed, the solution was again allowed to cool 

and the reactor was discharged into 1 L containers. The resulting polymer solution had a 

much higher viscosity due to the higher solids level. The final concentration for this 

polymer solution was 32 % polymer with viscosity of 10300 poise. The inherent viscosity 

of this polymer was 0.51 dL/g, which was an improvement over the first pilot reactor 

polymerization. 

 In the third pilot reactor polymerization, two main parameters were adjusted to 

compensate for the results of the second pilot reactor polymerization. The first was the 

reaction volume was decreased. In the second pilot reactor polymerization, the thermal 

expansion of the DMAc was not accounted for and some polymer and monomer were 

pushed into the condenser. The second parameter to be adjusted was the temperature 

overshoot. Due to the programming of the temperature controller for this reactor, the 

solution temperature significantly overshoots the set point. To avoid this problem, the 

heater output would manually be adjusted to reach the desired temperature then the 

controller would be switched back to automatically control the temperature for the 

remainder of the polymerization. 

 Before starting the polymerization, it was found that the gain on the controller 

could be adjusted so the gain was reduced significantly. The idea was that if the gain 

were reduced then the temperature overshoot would not be as severe or would be 

eliminated. In practice this was not the case. The solution temperature still went above 

the set point and the reactor was sealed in order to contain the solvent. Once the seal was 

released however the solvent again began to come out of the reaction and was collected 
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in the water scrubber. At this point, the amount of DMAc lost was added back to the 

reaction via a port, which allowed the reaction to remain under nitrogen. 

 After adding the DMAc back, the power output of the heater was controlled 

manually. This allowed for precise control of the solution temperature and ensured the 

solution temperature did not exceed the desired set point. Using only 40 % output on the 

heaters, the solution temperature was carefully increased to the final temperature around 

162 °C. Once the solution temperature was stable, the temperature controller was set back 

to automatic and controlled the heaters automatically. Figure 2.7 illustrates the 

temperature profile of the polymerization. It is evident from the temperature data that 

controlling the heater output manually gave much better temperature control and 

completely eliminated the temperature overshoot. Once the final temperature was reached 

and the automatic control switched back on, the temperature was stable for the entirety of 

the polymerization still with some oscillation.
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Figure 2.7: Plot of solution temperature, temperature set point, and heater output for pilot reactor polymerization 3.
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 After the 24 hours of polymerization time at 162 °C, the solution was cooled and 

collected in 1 L containers. The resulting inherent viscosity of this polymer was 0.46 

dL/g. The low inherent viscosity was in part due to the poor temperature control at the 

beginning of the reaction but it is likely there is another factor affecting the final polymer 

inherent viscosity. 

2.9.3 CONCLUSIONS 

 Three polymerizations were conducted in an 8 L pilot reactor at an industrial site 

and it was shown that this solution polymerization process could be scaled-up to produce 

PBI. The inherent viscosity of the final polymer in all of the reactions was too low to spin 

into useable fibers, however. Temperature overshoot issues plagued all three 

polymerizations but the problem was solved in the last polymerization by manually 

controlling the heater output. In order to have better control of the process and be able to 

more carefully monitor the reaction, the next polymerizations would be conducted in the 

laboratory setting.!

2.10 LABORATORY PRODUCTION 

  In an attempt to better control the polymerization, the production of PBI solution 

would be moved back into the laboratory setting. Not only would this give better control 

over the solution temperature but using glass would give better insights into the nature of 

this process. To do these polymerizations in the lab, a 5 L glass round bottom reactor 

would be used with a stainless steel stirrer, which has a helical stir arm and half moon 

paddle at the bottom. A mantle would heat the solution and the temperature controller 

could be tuned using neat DMAc.!
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2.10.1 EXPERIMENTAL 

2.10.1.1 SYNTHESIS OF M-PBI IN 5 L REACTOR 

 Isophthalaldehyde bisulfite adduct (860.17 g, 2.513 moles), 3,3’,4,4’-

tetraaminobiphenyl (538.52 g, 2.513 moles), sodium bisulfite (10.46 g, 0.1005 moles), 

and dimethylacetamide (2370 mL) were added to a 5 L round bottom flask. The flask was 

fitted with a stainless steel stirrer, reflux condenser, and nitrogen flow. The flask was 

then placed in a heating mantle, which was controlled by a thermocouple inside the 

solution. The solution was then refluxed and stirred for 24 hours. Some of the resulting 

polymer solution was precipitated in water, washed with methanol, and dried at 200 °C 

under vacuum. 

2.10.1.2 SYNTHESIS OF M-PBI IN 2 L REACTOR 

 Isophthalaldehyde bisulfite adduct (229.38 g, 0.6702 moles), 3,3’,4,4’-

tetraaminobiphenyl (538.52 g, 0.6702 moles), sodium bisulfite (2.790 g, 0.0.0268 moles), 

and dimethylacetamide (632 mL) were added to a 2 L round bottom flask. The flask was 

fitted with a stainless steel stirrer, reflux condenser, and nitrogen flow. The flask was 

then placed in a heating mantle, which was controlled by a thermocouple inside the 

solution. The solution was then refluxed and stirred for 24 hours. Some of the resulting 

polymer solution was precipitated in water, washed with methanol, and dried at 200 °C 

under vacuum. 

2.10.2 RESULTS 

 The first trial of the lab production produced an important observation almost 

immediately. As the mantle was heating the solution, the thermocouple reading the 
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solution temperature increased quickly to 130 °C, which was far above the oil 

temperature and a liquid refluxed in the reactor. There also was a ring of precipitate 

around the edges of the reactor where this liquid was condensing back into the solution. 

The precipitate had a yellow color and it was then hypothesized that water was being 

produced as a by-product of the reaction causing precipitation of PBI on the sides of the 

reactor. To confirm this hypothesis, a distillation column was attached to the reactor 

where the condenser had been. At this point, the head temperature climbed to 100 °C and 

around 200 mL of water was distilled from the reaction. As the water was removed, the 

precipitate went back into solution. Once the headspace temperature began to rise above 

100 °C, the condenser was reinstalled and the polymerization proceeded for the 

remainder of the reaction time under reflux conditions. The inherent viscosity of the 

polymer was 0.59 dL/g; an improvement over all of the trials in the pilot reactor. 

 The next measures to improve the I.V. of the polymer were then focused on 

ensuring that all water was removed from the polymerization to drive the reaction 

towards the product. In the two proceeding polymerizations, similar results were 

observed. As the solution was heated, water was distilled off until the headspace 

temperature increased to the reflux temperature of DMAc. At this point the 

polymerizations would be transitioned to reflux mode and remained this way until the 

end of the reaction. These two subsequent reactions were both aborted, however, when 

the glass reactor cracked and caused the heating mantle to short.  

 Exhausting the supply of 5 L reactors and heating mantles, the next 

polymerizations were attempted in 2 L reactors in oil baths. Again, water was distilled 

from the reaction until the headspace temperature rose to 148 °C. The reflux condenser 
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was then reattached and these polymerizations were able to go to completion. Even with 

the distillation of the water, the resulting inherent viscosities were only 0.56 and 0.40 

dL/g. 

2.10.3 CONCLUSIONS 

 An important observation was made for this particular polymerization. Water is a 

byproduct of the reaction and must be removed to drive the reaction to completion. 

Distilling the water also eliminates any PBI from precipitating on the walls of the reactor, 

which prematurely stops that polymer from increasing in molecular weight. While the 

elimination of water did not completely solve the problem of low inherent viscosity, it 

did add to the knowledge of this polymerization method and distillation will be used for 

all future polymerizations using the bisulfite adduct monomer.!

2.11 PROJECT CONCLUSIONS AND FUTURE DIRECTIONS 

 Beginning with time and temperature studies, it was shown that the optimum 

conditions for this polymerization method were reflux temperature for 24 hours or more. 

Additional sodium bisulfite salts added to the polymerization were shown to increase 

polymer inherent viscosity to meet the required 0.7 dL/g for fiber spinning. Viscosity 

modifiers were also studied and both lithium chloride and sodium bisulfite proved to be 

effective. The final viscosity was very sensitive to inherent viscosity and solids content so 

it was concluded that viscosity would be adjusted on a per batch basis. 

 Next, scale-up of all the processes was attempted. Monomer synthesis proved to 

be a very scalable reaction and the reaction could be optimized for lower solvent use as 

well. The polymer synthesis presented many more challenges. In the pilot reactor, 

polymerization solution temperature was difficult to control and all of the polymer 
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produced was low I.V. Another set of laboratory experiments was conducted, which 

provided new insights into the reaction as it was found that water was produced during 

the polymerization. Although moderate I.V. polymers were produced, further 

experiments will be needed to achieve higher inherent viscosities at the appropriate 

polymer concentrations need for fiber spinning trials. 

 In future work, the focus will certainly be to resolve the issue of low I.V. polymer 

being produced. Monomer purity and contaminants should be investigated since the 

monomer can be hygroscopic. Additionally, most reactions have only lasted for 24 hours 

so longer polymerization times could be beneficial for larger scale reactions. !

!
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 CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF 

POLYBENZIMIDAZOLE FROM ORTHOESTER MONOMERS 

3.1 INTRODUCTION 

 In the search for methods to prepare polybenzimidazole in solution, only one 

article in the literature presented a procedure to do so in dimethylacetamide (DMAc) 

other than by the bisulfite adduct method.1 This alternative procedure utilizes a 

bisorthoester monomer in conjunction with the tetraamine to synthesize 

polybenzimidazole in DMAc (Scheme 3.1).2 Orthoesters have been known to be highly 

reactive intermediates for the synthesis of heterocycles,3 which make them an attractive 

chemistry to investigate for this application. In Dudgeon and Vogl’s article2 on orthoester 

monomers, polymerizations were conducted at very low concentrations below 2% 

polymer content and the inherent viscosity of the polymer was 0.32 dL/g. To be a viable 

route in a fiber spinning application, the resulting polymer would need to have an 

inherent viscosity above 0.70 dL/g and the polymer content of the solution is typically 

targeted at around 26%. Thus, preliminary investigations were conducted to produce 

polybenzimidazole from these bisorthoester monomers at high polymer concentration. 

 

Scheme 3.1: General synthesis of m-PBI from an orthoester monomers. 
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3.2 MATERIALS 

 α,α,α,α’, α’, α’-hexachloro-m-xylene (HCMX) was purchased from TCI America 

and used without further purification. Sodium was purchased from Alfa Aesar and used 

as received. 3,3’,4,4’-Tetraaminobiphenyl (TAB) was donated by BASF. Methanol was 

purchased from MACRON Fine Chemicals and distilled before use. Dimethylacetamide 

was purchased from Acros Organics. 

3.3 EXPERIMENTAL 

3.3.1 SYNTHESIS OF HEXAMETHYLORTHOISOPHTHALATE (HMOI) 

 Sodium (3.84 g, 0.167 moles) was added to 300 mL of distilled methanol in a 500 

mL round bottom flask. The flask was cooled in an ice bath as the sodium dissolved. 

Once the sodium completely dissolved and the solution had cooled to 5 °C, HCMX (7.82 

g, 0.025 moles) was added dropwise. The solution was refluxed for 5 days. Once cooled 

to room temperature, the solution was filtered and the methanol was removed by vacuum 

distillation. The crude product was then mixed with water and extracted with chloroform 

(10x50 mL). The chloroform extracts were washed with saturated aqueous sodium 

bicarbonate solution and dried over anhydrous magnesium sulfate. The chloroform was 

removed by vacuum distillation resulting in 5.795 g HMOI (80% yield), m.p. 91 °C (lit.3 

m.p. 95.4-96.6 °C). 1H-NMR (DMSO-d6), ppm: 3.16 (6H, s, OCH3), 7.28-7.77 (3H, m, 

Ar-H). 
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3.3.2 POLYMERIZATION OF POLY(2,2’-M-PHENYLENE-5,5’BIBENZIMIDAZOLE) (M-PBI) 

USING HMOI 

 HMOI (1.726 g, 0.006 moles), TAB (1.280 g, 0.006 moles), and 9.88 mL of 

DMAc were added to a 100 mL three-neck round bottom flask. The flask was equipped 

with nitrogen flow, mechanical stirrer, and reflux condenser. The solution was heated 

from room temperature to reflux over 1 hour and held at this temperature for 24 hours. 

The solution was then cooled to room temperature and the polymer was precipitated in 

water. The polymer was washed several times with methanol to remove DMAc and dried 

overnight at 200 °C under vacuum. 

3.4 CHARACTERIZATION 

3.4.1 INHERENT VISCOSITY (I.V.) 

Approximately 0.050 g of recently dried polymer was added to a 25 mL 

volumetric flask. The flask was partially filled with concentrated sulfuric acid and shaken 

on a mechanical wrist-action shaker overnight to dissolve the polymer. Once all polymer 

was dissolved, the flask was completely filled with concentrated sulfuric acid to achieve a 

final polymer concentration of 0.2 g/dL. The polymer solution was filtered through a 0.4 

µm filter to remove any undissolved particles and the filtered solution was added to a 200 

µm Ubbelohde viscometer. The viscometer was placed into a 30 °C water bath for 30 

minutes. Three flow times between the calibrated marks on the viscometer were 

measured. The average of these times was used in Equation 3.1 as the solution time t. 
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Equation 3.1 

!!"# =
!" ! !!

! !

ηinh (dL/g): inherent viscosity 

t (sec): solution flow time 

t0 (sec): solvent flow time 

C (g/dL): solution concentration 

3.4.2 THERMOGRAVIMETRIC ANALYSIS (TGA) 

 TGA was performed using a TA Instruments Q-5000 with heating rate of 10 

°C/min under nitrogen. Weight loss of polymer as a function of temperature was 

compared to commercial samples of m-PBI to confirm presence of desired product. 

3.4.3 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

 FTIR spectra were recorded on a Perkin Elmer Spectrum 100 using an attenuated 

total reflection (ATR) diamond cell attachment. Monomer spectra were used to detect 

impurities and polymer spectra were compared to commercial polymer spectra. 

3.4.4 NUCLEAR MAGNETIC RESONANCE (NMR) 

 NMR spectra were recorded using a 300 MHz Varian Mercury 300 Spectrometer 

using dimethyl sulfoxide-d6. 1H-NMR spectra of monomer samples were used to confirm 

the presence of the desired product and detect impurities. 

3.5 RESULTS 

 Following the previously published synthesis3, the desired orthoester monomer 

HMOI was synthesized in good yields and purity. Analysis of the monomer by FTIR 
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(Figure 3.1) showed a strong absorption peak at 1100 cm-1
 corresponding to the C—O 

stretch of the orthoester.3 A small peak at 1700 cm-1 (C=O stretch) is present in the 

spectrum indicating some of the orthoester was hydrolyzed to the methyl ester.  As 

previously reported3, orthoesters are sensitive to moisture and can convert to the ester. 

Aqueous work-up procedures and exposure to moisture in the air are likely the cause for 

these impurities. 

 

Figure 3.1: FTIR spectrum of synthesized HMOI. 

 Analysis of HMOI by 1H-NMR (Figure 3.2) produced a singlet at 3.14 ppm from 

the methoxy protons (a) and three peaks between 7.2 and 7.8 ppm from the aromatic 

protons (b, c, d). The NMR spectrum along with the IR spectrum are strong evidence that 

the desired product was successfully synthesized. A small peak at 3.9 ppm also suggests 

hydrolysis of a small amount of the orthoester to the methyl ester. 
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Figure 3.2: 1H-NMR of HMOI in DMSO-d6. 

Despite the presence of some ester impurities, HMOI and TAB was polymerized 

at several concentrations in DMAc to determine the optimal conditions to achieve high 

polymer. Polymer concentrations ranged from 10 to 30 weight percent. The resulting 

inherent viscosities of the polymers synthesized are shown in Figure 3.3. While most 

polymer samples synthesized were of low I.V., the polymerization performed at 15% 

polymer concentration resulted in an I.V. of nearly 0.5 dL/g. The polymerization 

performed at 30 weight percent polymer content only produced a polymer powder and 

not a solution. The resulting powder did not dissolve in sulfuric acid to measure inherent 

viscosity. 
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Figure 3.3: Inherent viscosity of m-PBI synthesized at several polymer concentrations. 

TGA was used to compare the thermal stability of the m-PBI produced by this 

method to a commercial sample of m-PBI (Figure 3.4). Initially the m-PBI made from 

the orthoester monomer has a much higher weight loss up to 100 °C however this is 

likely due to differences in work-up procedures as the commercial polymer is heated to 

350 °C in the final stages of polymerization while the m-PBI from the orthoester was 

only dried at 200 °C after precipitation in water. The weight loss of the two samples 

above 100 °C is nearly identical and both samples begin to rapidly degrade at 600 °C. 
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Figure 3.4: TGA of m-PBI from orthoester monomer (bottom curve) and commercial m-
PBI (top curve). 

 The polymer prepared from the orthoester was also analyzed by FTIR and the 

spectrum was compared to a commercial sample of m-PBI (Figure 3.5). In these spectra, 

other than differences in intensity, the samples both appear to be the same material. 

Strong characteristic absorption peaks at 1300 and 1500 cm-1 appear in both spectra as 

well as several other weaker absorption peaks, which align between the two samples. 
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Figure 3.5: FTIR spectra of m-PBI from orthoester monomer (top curve) and 
commercial m-PBI (bottom curve). 

3.6 CONCLUSIONS 

 The orthoester monomer HMOI was successfully synthesized and was able to be 

polymerized in solution to produce m-PBI. While this method is still in development and 

needs optimization of monomer and polymer synthesis, the initial results show a 

promising future for the production of m-PBI in solution at high polymer concentration. 

The 15 weight percent polymerization produced the highest reported I.V. to date with the 

use of HMOI. While the target I.V. was not met, other polymer concentrations between 

10 and 20 weight percent could prove to meet or exceed 0.7 dL/g I.V. Further studies into 

other orthoester chemistries such as the propyl analog could also provide interesting 

results for the polymerization of m-PBI in solution. A critical parameter that could affect 
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the polymerization and the resulting polymer molecular weight is the water content of the 

monomer. Future work in this area should be focused in minimizing aqueous work-up 

procedures and atmosphere moisture exposure as these affect monomer reactivity and the 

ultimate conversion during polymerization, as predicted by the Carothers Equation.4   
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CHAPTER 4: SYNTHESIS AND CHARACTERIZATION OF AN ADAMANTANE 

CONTAINING POLYBENZIMIDAZOLE 

4.1 INTRODUCTION 

 The cage-like structure of adamantane presents an interesting structure to 

investigate for gas separation membranes. When incorporated into the backbone of PBI, 

the adamantane would allow for the free volume of PBI to be increased and chain 

packing to be slightly disrupted. Compared to meta-PBI, this disruption could offer a 

higher membrane performance in gas separation devices. The adamantane-PBI has also 

never been tested for its performance as a fuel cell membrane.  For these reasons, the 

synthesis and characterization of an adamantane containing PBI was studied. 

!

Scheme 4.1: General synthetic approach for synthesizing an adamantane containing PBI. 

4.2 MATERIALS 

 1,3-Adamantanedicarboxylic acid and thionyl chloride were purchased from TCI 

and used as received. 3,3’,4,4’-Tetraaminobiphenyl (TAB) and polyphosphoric acid 

(PPA) were donated by BASF. Methanesulfonic acid and Dimethylacetamide (DMAc) 

were purchased from Acros Organics. 3,4-Diaminobenzoic acid was supplied by Chem-

Impex International Inc. and used as without further purification. Triethylamine, diethyl 
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ether, phosphorus pentoxide, and sulfuric acid were purchased from Fisher Chemical. 

Dimethylformamide (DMF), Dimethylsulfoxide (DMSO), and ammonium hydroxide 

were purchased from BDH. Chloroform was supplied by EMD. Ethanol was purchased 

from Decon Labs Inc. 

4.3 CHARACTERIZATION 

4.3.1 INHERENT VISCOSITY 

 Approximately 0.050 g of recently dried polymer was added to a 25 mL 

volumetric flask. The flask was partially filled with concentrated sulfuric acid and shaken 

on a mechanical wrist-action shaker overnight to dissolve the polymer. Once all polymer 

was dissolved, the flask was completely filled with concentrated sulfuric acid to achieve a 

final polymer concentration of 0.2 g/dL. The polymer solution was filtered through a 0.4 

µm filter to remove any undissolved particles and the filtered solution was added to a 200 

µm Ubbelohde viscometer. The viscometer was placed into a 30 °C water bath for 30 

minutes. Three flow times between the calibrated marks on the viscometer were 

measured. The average of these times was used in Equation 4.1 as the solution time t. 

Equation 4.1 

!!"# =
!" ! !!

! !

ηinh (dL/g): inherent viscosity 

t (sec): solution flow time 

t0 (sec): solvent flow time 

C (g/dL): solution concentration 
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4.3.2 THERMOGRAVIMETRIC ANALYSIS (TGA) 

 TGA was performed using a TA Instruments Q-5000 with heating rate of 10 

°C/min under nitrogen. Weight loss of polymer as a function of temperature was 

compared to reports in literature. 

4.3.3 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

 FTIR spectra were recorded on a Perkin Elmer Spectrum 100 using an attenuated 

total reflection (ATR) diamond cell attachment. Polymer spectra were compared to 

commercial meta-PBI spectra. 

4.3.4 NUCLEAR MAGNETIC RESONANCE (NMR) 

 NMR spectra were recorded using a 300 MHz Varian Mercury 300 Spectrometer 

using dimethyl sulfoxide-d6. 1H-NMR spectra of monomer samples were used to confirm 

the presence of the desired product and detect impurities. 

4.4 ADAMANTANE CONTAINING POLYBENZIMIDAZOLE VIA PPA PROCESS 

 The Polyphosphoric Acid (PPA) Process was developed in 2005 as a convenient 

one pot synthesis to create phosphoric acid doped PBI membranes.1 In this process, 

monomers are dissolved in PPA, which serves as the reaction solvent as well as a 

condensing agent, and upon heating to high temperature the PBI is formed. This process 

has proven to be effective for a wide range of monomers and for this reason it was the 

starting point for the research into the synthesis of an adamantane containing PBI.1-2 

4.4.1 EXPERIMENTAL 

 1.524 g 1,3-adamantanedicarboxylic acid (0.0068 moles), 1.457 g TAB (0.0068 

moles), and 97 g PPA were added to a 100 mL three-neck resin kettle. The reactor was 
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fitted with an over-head mechanical stirrer and nitrogen flow. The kettle was placed into 

an oil bath and set to heat to 200 °C over 8 hours and allowed to remain at 200 °C for 16 

hours. After this time, the solution was cast onto glass plates and the PPA was allowed to 

hydrolyze to phosphoric acid in a 55 % relative humidity chamber. A small amount of the 

PPA solution was poured into a large excess of water and neutralized to pH 7 with 

ammonium hydroxide. 

4.4.2 RESULTS 

 During the polymerization, as the solution was being heated, the monomers 

initially dissolved making a homogeneous solution. Once the solution reached 80 °C, the 

solution began to foam as a gas was produced. By allowing the oil bath to continue to 

increase in temperature the foaming subsided and the solution became homogeneous 

again. After the oil bath had reached 200 °C and had remained at this temperature for 24 

hours, the solution was dark brown in color but viscosity had not increased. By 

comparison, most PBI polymers when synthesized by the PPA process will have 

increased in viscosity once the solution has reached this temperature or even lower 

temperatures. Casting the solution onto glass plates and allowing the polyphosphoric acid 

to hydrolyze did not create a phosphoric acid doped PBI membrane. 

 To investigate why this set of monomers did not create polymer several steps 

were taken to study this phenomenon. The TAB was polymerized with other monomers 

known to synthesize PBI such as isophthalic and terephthalic acid. Using the same 

method of polymerization, these sets of monomers did produce PBI indicating that the 

TAB was not contaminated. The focus was then shifted to the adamantane monomer. 

Recrystallization of the monomer from ethanol did not eliminate gas formation and 
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foaming and NMR of the monomer (Figure 4.1) did not indicate any contaminants were 

present.  

!

Figure 4.1: 1H-NMR of 1,3-adamantanedicarboxylic acid as received from TCI. 

The next step was to investigate the monomer-solvent interaction. To do this a 

sample of the adamantane monomer and polyphosphoric acid were subjected to the same 

conditions at which the polymerization occurred. Once again as the temperature reached 

80 °C a gas was produced and the solution began to foam indicating that the adamantane 

monomer was incompatible with the polyphosphoric acid. 

While researching this topic it was discovered in the literature that the 

adamantane containing PBI had been previously synthesized in a bulk polymerization3; 

however, a solution based polymerization of this polymer had not been published. The 

next topic to investigate was the small molecule analog of this polymer being the 

adamantane benzimidazole. The first reported method of synthesizing 2-(1-adamantyl)-
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benzimidazole was done by Saski et al.4 In this report, they mention that initial attempts 

to synthesize the adamantane benzimidazole from 1-adamantanecarboxylic acid and o-

pheynlenediamine with hydrochloric acid or polyphosphoric acid were unsuccessful. It is 

also mentioned that when polyphosphoric acid was used adamantane was recovered. 

These results explain the phenomenon that was observed while attempting to polymerize 

the 1,3-adamantanedicarboxylic acid. If adamantane is being formed in the reaction 

media, then the monomer is decarboxylating and forming carbon dioxide seen as the gas 

formed and solution foaming. The resulting decarboxylated product is unreactive in the 

polymerization. 

4.4.3 CONCLUSIONS 

 Based on the results from this set of experiments, it was concluded that 1,3-

adamantanedicarboxylic acid is not compatible with the PPA and another synthetic route 

would need to be devised. Upon further investigation into this topic, this hypothesis was 

confirmed in the literature. 

4.5 POLYMERIZATION OF ADAMANTANE-PBI IN EATON’S REAGENT 

 Eaton’s reagent is a common name for a solution of phosphorous pentoxide and 

methanesulfonic acid in a 1:10 ratio by weight, which was developed to replace 

polyphosphoric acid for certain applications. In the article, Eaton describes this solution 

as having low viscosity compared to PPA, inexpensive starting materials, and a good 

solvent for many organics.5 Eaton’s reagent could therefore be a good alternative to the 

polyphosphoric acid with which the adamantane monomer was incompatible. This 

reagent has also been shown to be an effective condensation media for synthesizing 

polybenzimidazole polymers.6  
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4.5.1 EXPERIMENTAL 

4.5.1.1 PREPARATION OF EATON’S REAGENT 

 Phosphorus pentoxide (10 g) and 100 mL methanesulfonic acid were measured 

into a 500 mL flask. The solution was heated to 50 °C and stirred overnight until all 

phosphorus pentoxide was dissolved. 

4.5.1.2 SYNTHESIS OF ADAMANTANE PBI IN EATON’S REAGENT 

 Adamantanedicarboxylic acid (1.121 g, 0.005 moles) and 3,3’4,4’-

tetraaminobiphenyl (1.071 g, 0.005 moles) were added to a 100 mL resin kettle. 25 mL of 

Eaton’s reagent was poured over the monomers and the resin kettle was fitted with an 

overhead mechanical stirrer and nitrogen flow. The kettle was placed in a room 

temperature oil bath and heated to 140 °C for 48 hours.  After this time the solution was 

allowed to cool and poured into 500 mL water. The polymer was neutralized to pH 7 with 

ammonium hydroxide, filtered off, and dried overnight at 120 °C. 

4.5.2 RESULTS 

 To determine the ideal conditions to polymerize the adamantanedicarboxylic acid 

monomer in Eaton’s reagent, recent literature was reviewed and it was found that a 1 

mmol:5 mL ratio of monomer to Eaton’s reagent had produced the highest inherent 

viscosities for other PBI chemistries in Eaton’s reagent.7 Using this same ratio for the 

adamantane monomer in Eaton’s reagent, polymerizations were conducted at this 

monomer concentration. 

 During the polymerization in Eaton’s reagent, the monomers dissolved 

completely and the solution turned a dark brown color. When the solution was heated 
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past 100 °C condensation could be observed on the sides of the reaction kettle indicating 

reaction of the monomers. After 24 hours at 140 °C the solution viscosity did not increase 

so the solution was allowed to remain at 140 °C for an additional 24 hours to compensate 

for the low polymerization temperature. Sometime between 36 and 48 hours the polymer 

solution increased in viscosity so that the solution no longer flowed and had the 

consistency of a gel. This rapid increase in viscosity has also been observed with other 

monomers when polymerizing PBI in Eaton’s reagent.6 At this point, the solution was 

allowed to cool and was poured into water resulting in the precipitation of a grey-brown 

polymer. 

 To characterize this polymer and measure a relative molecular weight, inherent 

viscosity of the polymer was measured. The standard measurement of inherent viscosity 

for polybenzimidazole polymers requires that the polymer be dissolved in sulfuric acid at 

0.2 g/dL, but after two weeks of shaking, the polymer had not dissolved completely in the 

sulfuric acid. In previous work adamantane based PBI, Moon et al. reported dissolving 

the polymer in formic acid to measure inherent viscosity and reported that the polymer 

was only soluble in some organic solvents.3 The solvent was then switched from sulfuric 

acid to formic acid and the polymer was measured to have an inherent viscosity of 1.76 

dL/g at a concentration of 0.2 g/dL, indicating a relatively successful polymerization. 

 Thermogravimetric analysis (TGA) of the polymer (Figure 4.2) showed that the 

polymer retained approximately 15 wt.% moisture content but was stable until 500 °C at 

which point it rapidly degraded. By comparison, TGA of the adamantane PBI reported by 

Moon et al. had thermal stability up to 550 °C and a char yield of 55 % at 800 °C.3 The 

difference in thermal stability is likely due to incomplete ring closure in the polymer 
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backbone as a result of the lower polymerization temperature. Moon et al. used a final 

polymerization temperature of 310 °C but due to the low decomposition temperature of 

the Eaton’s reagent the solution polymerization in the current study was limited to 140 

°C. 

 

Figure 4.2: TGA in nitrogen of adamantane PBI synthesized in Eaton’s reagent. 

 The IR spectrum of the adamantane polymer (Figure 4.3) shows similar 

absorption peaks to the commercial m-PBI in the 800 to 1700 cm-1 region of the spectrum 

indicating successful polybenzimidazole formation. Additionally, Sasaki published IR 

data for the 2-(1-adamantyl)-benzimidazole as having peaks at 3040, 1620, 1590, 1530, 

and 740 cm-1 and when compared to the adamantane PBI all of these peaks are present in 

the adamantane PBI spectrum.4 
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Figure 4.3: IR spectrum of adamantane PBI (top curve) and commercial m-PBI (bottom 
curve). 

4.5.3 CONCLUSIONS 

 Eaton’s reagent proved to be a compatible solvent for the adamantanedicarboxylic 

acid monomer and an alternative to PPA as the polymerization solvent. The adamantane 

PBI was successfully synthesized in this reaction medium, which was confirmed by 

TGA, FTIR, and inherent viscosity measurements. Although benzimidazole ring closure 

may not be complete, this could be addressed through subsequent thermal treatments or 

additional reaction in PPA at high temperatures. 

4.6 ADAMANTANE PBI FILM FABRICATION 

Preparation of a membrane or film made from the new adamantane 

polybenzimidazole for use in fuel cells or gas separation applications required that a 
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method of membrane production be devised. The first method to be investigated would 

be to modify the PPA Process for creating a phosphoric acid doped membrane to be used 

in a hydrogen fuel cell. Polymer membranes for use in gas separation devices would 

require that all solvent be removed so film fabrication from organic solvents was 

investigated. 

4.6.1 EXPERIMENTAL 

4.6.1.1 PREPARATION OF PHOSPHORIC ACID DOPED ADAMANTANE PBI MEMBRANE 

FROM POLYMER POWDER 

 Adamantane PBI (1.5 g) was added to a 100 mL resin kettle. 50 g PPA was 

poured over the polymer powder and the resin kettle was fitted with an overhead 

mechanical stirrer and nitrogen flow. The mixture was stirred and heated to 200 °C for 24 

hours. After this time, the solution was cast onto glass plates and placed in a 55 % 

relative humidity chamber. 

4.6.1.2 PREPARATION OF PHOSPHORIC ACID DOPED ADAMANTANE PBI MEMBRANE 

FROM EATON’S REAGENT SOLUTION 

 Following the same method described in section 4.5.1, the adamantane PBI was 

synthesized in Eaton’s reagent. After the 48 hours, 96 g PPA was poured into the resin 

kettle over the polymer solution. The resin kettle was reassembled with the overhead 

mechanical stirrer and nitrogen flow and heated to 200 °C overnight. The solution was 

then cast onto glass plates and placed in a 55 % relative humidity chamber. 
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4.6.1.3 PREPARATION OF ADAMANTANE PBI FILM FROM ORGANIC SOLVENTS 

 Adamantane PBI powder (0.50 g) was measured into a 100 mL round bottom 

flask. Dimethylacetamide (50 mL) was poured over the polymer powder and the mixture 

was heated to reflux for 24 hours. The solution was poured into a petri dish and placed on 

a hot plate set to 40 °C in a nitrogen environment. Once all solvent had evaporated the 

polymer film was removed from the petri dish. 

4.6.2 RESULTS 

Dissolving the adamantane PBI powder in PPA and casting a film proved to be 

difficult. At 3 weight percent polymer content the solution appeared homogeneous but 

after casting and hydrolysis of the PPA a solid membrane was not formed. Increasing the 

polymer content was attempted, however, the polymer did not completely dissolve and 

the resulting membranes were not homogeneous. Lowering the polymer content did not 

form solid membranes either. 

 In order to achieve higher polymer content, the next approach was to add PPA at 

the end of a polymerization in Eaton’s reagent. Attempting this procedure did provide a 

means for increasing the polymer concentration to 5 weight percent but when the solution 

was cast, the polymer did not form a homogeneous membrane after hydrolysis of the 

PPA. Since neither method of producing a phosphoric acid doped adamantane PBI 

membrane was successful, the focus was shifted to using organic solvents to create a 

film. 

 To begin these trials, DMAc was used to dissolve the polymer and it was found 

that the adamantane PBI was only soluble up to 1 weight percent. Attempts to produce a 

film from this solution were unsuccessful as the polymer film that remained after 
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evaporation of the solvent was very brittle and could not withstand removal from the 

glass. The next step was to add lithium chloride as a solution stabilizer to increase the 

solubility of the polymer and increase the casting concentration. Using DMAc with 2 % 

lithium chloride did allow for a marginal increase in solubility to 2 % polymer content. 

The films from this solution were also brittle and did not withstand removal from the 

glass. 

 Switching solvents to N-methylpyrrolidone (NMP) gave better solubility 

compared to the neat DMAc but still only 2 % polymer content was achievable. Much 

like the films made from DMAc, using NMP did not affect the final film durability. The 

final solvent was DMSO, which showed similar solubility to DMAc, and only 1 wt.% 

polymer solutions were obtained. Again, the films were brittle and broke apart when 

removed from the glass. 

4.6.3 CONCLUSIONS 

 A series of solvents were studied in an attempt to create an adamantane PBI film. 

The trials using PPA to generate a phosphoric acid doped membrane proved 

unsuccessful. Additionally, all attempts to use organic solvents to create a film failed as 

well. The low solubility of this polymer did not provide enough polymer chains to 

entangle and form a film that would hold up to external stresses. A method to increase the 

polymer solubility in organic solvents would be the next area of research. 

4.7 ADAMANTANE MONOMER MODIFICATION 

 In order to increase the solubility of the adamantane PBI and stabilize the 

monomer in PPA, a modification to the adamantane monomer was proposed that would 

install benzimidazole moieties onto the adamantane prior to polymerization. The 
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proposed method of modification (Scheme 4.2) would first utilize the Eaton’s reagent to 

condense methyl-3,4-diaminobenzoate with the adamantane monomer to form the 

bisbenzimidazole. The methyl ester could then be hydrolyzed to the carboxylic acid for 

use in the polymerization. This modification would stabilize the adamantane monomer in 

PPA since the carboxylic acid would not be as easily removed in the acidic conditions. 

Also, slightly decreasing the adamantane content would allow for better solubility in 

organic solvents without sacrificing the desired effects of the adamantane in the 

backbone. 

 

Scheme 4.2: Proposed synthesis of adamantane monomer modification. 

4.7.1 EXPERIMENTAL 

4.7.1.1 SYNTHESIS OF METHYL-3,4-DIAMINOBENZOATE 

 3,4-Diaminobenzoic acid (9.998 g, 0.065 moles), methanol (200 mL), and 

concentrated sulfuric acid (9.0 mL) were added to a 500 mL round bottom flask. The 

solution was stirred and refluxed for 24 hours. The methanol was removed by vacuum 

distillation followed by neutralization of the sulfuric acid with saturated aqueous sodium 

bicarbonate solution. The product was extracted with diethyl ether (10x50 mL) and the 

ether extracts were dried over magnesium sulfate. The ether was removed by vacuum 
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distillation leaving 7.52 g of product (69 % yield), m.p. 105 °C (lit. m.p. 105-110). 1H-

NMR (DMSO-d6), ppm: 3.70 (3H, s, CH3), 4.65 (2H, s, NH2), 5.27 (2H, s, NH2), 6.51-

7.14 (3H, m, ArH). 

4.7.1.2 SYNTHESIS OF 1,3-(2,2’-BISBENZIMIDAZOLE-6-METHYL ESTER)-ADAMANTANE IN 

EATON’S REAGENT 

 Adamantanedicarboxylic acid (1.121 g, 0.005 moles), methyl-3,4-

diaminobenzoate (1.6618 g, 0.010 moles), and 25 mL of Eaton’s reagent were added to a 

100 mL round bottom flask. The solution was stirred and heated to 140 °C for 48 hours 

under a nitrogen atmosphere. After allowing the solution to cool, it was poured into 500 

mL water forming a grey precipitate. The aqueous mixture was neutralized with 

ammonium hydroxide and the product was filtered off. The product was recrystallized 

from DMF leaving 1.017 g of product (42 % yield). Elemental analysis: C, 62.70; H, 

5.75; N, 12.39 (calc. C, 69.41; H, 5.82; N, 11.56). 

4.7.1.3 SYNTHESIS OF POLYPHOSPHORIC ESTER (PPE) 

 Phosphorus pentoxide (10 g), 10 mL chloroform, and 20 mL of diethyl ether were 

added to a 50 mL round bottom flask. The solution was stirred and refluxed until the 

solution became clear (18 hours). The chloroform and excess diethyl ether were removed 

by vacuum distillation, leaving a pale yellow viscous liquid. 

4.7.1.4 SYNTHESIS OF 1,3-ADAMANTANEDIACID CHLORIDE 

 1,3-Adamantanedicarboxylic acid (1.0 g, 0.0044 moles) was added to a 50 mL 

round bottom flask and 15 mL of thionyl chloride was poured on top. The solution was 

stirred and heated to 55 °C for 2 hours. Excess thionyl chloride was removed by vacuum 
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distillation and the product was dried under vacuum overnight. 0.89 g recovered (0.0034 

moles, 77 % yield). 1H-NMR (DMSO-d6), ppm: 1.5-1.9 (12H, m), 2.05 (2H, s). 

4.7.1.5 TWO-STEP SYNTHESIS OF 1,3-(2,2’-BISBENZIMIDAZOLE-6-METHYL ESTER)-

ADAMANTANE 

 1,3-Admantanediacid chloride (0.965 g, 0.0036 moles), methyl-3,4-

daminobenzoate (1.196 g, 0.0072 moles), triethylamine (0.728 g, 0.0072 moles), and 50 

mL of diethyl ether were added to a 100 mL round bottom flask. The solution was stirred 

overnight at room temperature. Precipitate was filtered off, washed with water, and dried 

overnight under vacuum. 

 The product (0.200 g) from the previous step, 5 drops of polyphosphate ester, and 

20 mL of chloroform were refluxed for 24 hours. The solution was poured into water and 

the organic layer was washed with aqueous sodium bicarbonate. The organic layer was 

collected and dried over magnesium sulfate. The solution was filtered and chloroform 

removed by vacuum distillation. 0.115 g (6 % yield) of material was recovered. 1H-NMR 

(DMSO-d6), ppm: 1.61-2.06 (14H, m, Ad-H), 3.70 (6H, s, CH3), 5.28 (2H, s, NH2), 6.48-

7.14 (6H, m, Ar-H). 

4.7.2 RESULTS 

 Since Eaton’s reagent had proved to be an effective condensing agent for the 

synthesis of the adamantane-PBI polymer, it was the first solvent system to be attempted 

for the adamantane bisbenzimidazole synthesis. Very quickly the solution turned a dark 

brown color and remained this color for the entire duration of the synthesis. After heating 

the solution for 24 hours, excess water was used to precipitate the product followed by 

neutralization of the Eaton’s reagent. 1H-NMR of the recrystallized product (Figure 4) 
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shows the product of the synthesis in blue the adamantanedicarboxylic acid (green) and 

methyl-3,4-diaminobenzoate (red). Analyzing the peaks in the product and starting 

materials, the product shows all of the same peaks from the starting materials except for 

the carboxylic acid proton peak at 12 ppm. The aromatic peaks are shifted downfield 

from 6.5-7.5 ppm in the diaminobenzoate to 7.5-8.5 ppm in the product as well as the 

amine protons from 4.5-5.5 ppm to 5.5-6 ppm. These results indicate that the amide was 

formed. The presence of amine peaks and the absence of a benzimidazole N-H peak 

around 13-14 ppm in the product NMR indicates ring closure did not occur and the 

benzimidazole was not formed. 

 

Figure 4.4: 1H-NMR of product formed in Eaton’s (bottom curve) reagent and the 
starting materials (middle curve, 1,3-adamantanedicarboxylic acid; top curve, methyl-3,4-
diaminobenzoate). 

 These results ultimately led to the investigation of another synthetic route to 

install the benzimidazole moiety onto the adamantane prior to polymerization. Reviewing 
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the literature produced few synthetic options. The only technique to use the carboxylic 

acid form of the adamantane to synthesize a benzimidazole derivative involved using 8.0 

kbar of pressure for which the equipment to do this was not available.8 Another route 

involved first using the acid chloride derivative of adamantane to first generate the amide 

product. The benzimidazole would then be formed in a second step.4 

 Synthesizing the 1,3-adamantanediacid chloride was a fast and efficient process 

with thionyl chloride. Figure 5 shows 1H-NMR of the carboxylic acid derivative of 

adamantane (red) and the adamantanediacid chloride (blue). The carboxylic acid presents 

a peak at 12 ppm and after the reaction with thionyl chloride this peak completely 

disappears. This product was used for the next step of synthesis without further 

purification. 

 

Figure 4.5: 1H-NMR of 1,3-adamantanedicarboxylic acid (top curve) and 1,3-
adamantanediacid chloride (bottom curve). 
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 The next step in the synthesis was to form the amide from the adamantanediacid 

chloride and the methyl-3,4-diaminobenzoate. This reaction also proved to be easy and 

efficient. After stirring the solution overnight the product precipitated and was able to be 

filtered and dried. The 1H-NMR (Figure 6) of the product shows a single peak at 5.3 ppm 

from the remaining amine as well as the aromatic proton peaks at 6.5-7 and a methyl 

ester peak at 3.7 ppm. 

 

Figure 4.6: 1H-NMR of adamantane amide product. 

 After the amide synthesis was completed the final step was to perform the ring 

closure. Following the synthesis previously reported,4 the amide was refluxed in 

chloroform with a few drops of PPE; however, the desired product was not obtained and 

the starting materials were recovered. One point of concern is that the PPE, which was 

reported in Sasaki’s experimental section, was not described. The use for such material 
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can only be speculated as a condensing agent to remove any water byproduct and push 

the reaction. Additionally, the low boiling point of chloroform likely does not provide 

enough energy to form the benzimidazole ring. 

4.7.3 CONCLUSIONS 

 The synthesis of the bisbenzimidazole derivative of adamantane was attempted by 

two methods. In the first method, Eaton’s reagent was used to try to form the desired 

product but only the amide was formed. The second method utilized a two-step synthesis 

but again only the amide could be synthesized. Ring closure of the amino-amide likely 

requires very high temperature (>200 °C) as is case in polymerizations in PPA and solid-

state. Alternatively, a more reactive functional group on the adamantane could allow for 

the benzimidazole to be formed at lower temperature but more research is required to 

determine the optimal chemistry to make this monomer modification. 

4.8 PROJECT CONCLUSIONS AND FUTURE DIRECTIONS 

 In this work, the synthetic methods for incorporating the adamantane moiety into 

the backbone of PBI was studied. Using the PPA process, which has shown in recent 

years to be a convenient method for synthesizing various PBI chemistries,1-2 the 

adamantane monomer proved to be incompatible with PPA and decarboxylated. Eaton’s 

reagent was then found to be an alternative solvent for polymerization, which would not 

cause decarboxylation at elevated temperatures and still act as a condensing agent. The 

adamantane PBI synthesized from Eaton’s reagent had an inherent viscosity of 1.76 dL/g 

as measured in formic acid and showed thermal stability up to 500 °C. Attempts to use 

this polymer to form a phosphoric acid doped membrane for use in a fuel cell or a film 

from organic solvents were all unsuccessful. Monomer modifications were performed in 
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order to gain solubility in organic solvents; however, the desired monomer could not be 

synthesized. 

 Alternative methods of producing a PBI film with the adamantane in the 

backbone could be achieved by exploring alternative functional groups on the 

adamantane monomer or even copolymer systems using monomers that are more soluble 

than the adamantanedicarboxylic acid. The aldehyde functionality has shown to be a 

convenient route to forming PBI in solution by way of a bisulfite adduct. Additionally, 

copolymers of the adamantane PBI and meta-PBI could provide the solubility necessary 

to form a film while still enhancing the gas separation performance over the meta-PBI 

homopolymer.  
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